Multi-Grid Probe for Glow Discharge Plasma Analysis

By Zachary Zembower
Supervisor: Dr. Vladimir Gorokhovsky
Consultant: Professor Svetlana Avtauzeva
Colorado School of Mines, Physics Department
May 3, 2013

- Develop a technique for determining energy distribution of ions in plasma
- Test it against other proven techniques
- Find correlation between spectral line intensities

Goals
- Develop software for data acquisition and analysis
- Cost effective alternative to mass/energy analyzer
- Costs $150,000

Experimental Setup
- 4 precise spectrometers ranges
 - 200-400nm
 - 400-600nm
 - 600-800nm
 - 800-1000nm
- 1 broad spectrometer for 400-1000nm range

Probe Theory
- Plasma enters through small hole
- First grid is grounded
- Separates probe from plasma
- Second grid is below ground
- Filters out primary electrons
- Third grid is swept through a potential range
- Filters out ions that are below that energy level
- Fourth grid is grounded
- Sets a reference potential for the collector
- Fifth grid is below ground
- Filters out secondary electrons emitted by third grid
- Collector is grounded or negatively biased
- Helps collection of ions
- The derivative of the graph is taken to show the ion energy distribution function (IEDF)

Probe Design
- Cross section of probe in SolidWorks
- Screw holds tension on grid assembly
- Grids are stainless steel
 - Have tails to allow soldering to wires
 - Collector is graphite
 - Has grid behind it to allow for easy connection
- Housing is stainless steel
- Everything else is PTFE
- Hole in side for wires to run to chamber wall

Future Work
- Calculate concentration of different species from spectra
- Determine electron temperature from spectra
- Compare results with Langmuir probe
- Test GEA in glow discharge environment
- Finish computer interface
- Allow for real time updates from probe