Spectroscopy

Sensitivity Calculation

- Took spectra from NIST certified Deuterium lamp DH-2000
- Calculated polynomial from NIST data
- Compared actual spectra to NIST certified data
- Same procedure for tungsten halogen lamp in visual range

- Identification of lines in a standard spectra
- Full spectra covers the range between 200-1000nm
- Recognition is an ongoing process

Pressure Response, Voltage = 300V

- · Changing voltage under constant pressure
 - Intensity increases with voltage
- · Changing pressure under constant voltage
 - •A maximum is observed at 30mTorr
- Assume excitation of Argon atoms is direct electron impact
 - Good for pressures below 30 mTorr
 - · More complex behavior
 - Due to many more elementary processes
 - In addition to direct electron excitation

Multi-Grid Probe for Glow Discharge Plasma Analysis

By Zachary Zembower

Supervisor: Dr. Vladimir Gorokhovsky Consultant: Professor Svetlana Avtaeva Colorado School of Mines, Physics Department May 3, 2013

- · Develop a technique for determining energy distribution of ions in plasma
- · Test it against other proven techniques
- Find correlation between spectral line intensities

This work could not have been completed without the support of Vapor Technologies who provided funding, equipment, machine shop support, and vast amounts of knowledge

Goals

and discharge parameters

- Develop software for data acquisition and analysis
- · Cost effective alternative to mass/energy analyzer
 - Costs >\$150,000

Experimental Setup

- · 4 precise spectrometers ranges
 - 200-400nm
 - 400-600nm
 - 600-800nm
 - 800-1000nm
- 1 broad spectrometer for 400-1000nm

Probe Theory

3

5

Probe Design

• Plasma enters through small hole

• First grid is grounded

Plasma

- Separates probe from plasma
- Protects plasma from perturbation
- · Second grid is below ground
 - Filters out primary electrons
- · Third grid is swept through a potential range
 - Filters out ions that are below that energy level
- Fourth grid is grounded
 - Sets a reference potential for the collector
- Fifth grid is below ground
- Filters out secondary electrons emitted by third grid
- · Collector is grounded or negatively biased
 - Helps collection of ions
- The derivative of the graph is taken to show the ion energy distribution function (IEDF)

Cross section of probe in SolidWorks

- · Screw holds tension on grid assembly
- · Grids are stainless steel
- Have tails to allow soldering to wires • Collector is graphite
- - •Has grid behind it to allow for easy connection
- · Housing is stainless steel
- Everything else is PTFE
- Hole in side for wires to run to chamber wall

Electronic Schematic

- Arduino sets an 8-bit number through digital outputs
- Digital to analog converter converts 8-bit number to
- a voltage between 0-5 V
- High voltage amplifier amplifies voltage between 0-105 V
- Series of resistors drops voltage back to the range 0-5 V
 - · Arduino reads 0-5 V
- Ion repelling grid is charged to high voltage set point
 - · Filters out ions
- · Collector collects remaining ions
 - Generating a small (pA-mA) current
- Logarithmic current to voltage converter converts
- · current to voltage
 - Voltage is scaled internally to 0-5 V range
- · Arduino reads the voltage
- Arduino sends data to computer running MATLAB over USB
- · Arduino iterate through next 8-bit number

Physical Probe

Future Work

- Calculate concentration of different species from spectra
- Determine electron temperature from spectra
- Compare results with Langmuir probe
- · Test GEA in glow discharge environment
- Allow for real time updates from probe

Finish computer interface